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4.  THE MONTE CARLO METHOD

4.1 Introduction

This chapter is aimed at describing the Monte Carlo method for the simulation of grain

growth and recrystallization. It has also been extended to phase transformations and hybrid

versions (Monte Carlo coupled with Cellular Automaton) of the model can also

accommodate diffusion. If reading this chapter inspires you to program your own version of

the algorithm and try to solve some problems, then we will have succeeded! The method is

simple to implement and it is fairly straightforward to apply variable material properties such

as anisotropic grain boundary energy and mobility.  There are, however, some important

limitations of the method that must be kept in mind.  These limitations include an inherent

lattice anisotropy that manifests itself in various ways.  For many purposes, however, if you

pay attention to what has been found to previous work, the model is robust and highly

efficient from a computational perspective.  In many circumstances, it is best to use the

model to gain insight into a physical system and then obtain a new theoretical understanding,

in preference to interpreting the results as being directly representative of a particular

material.  Please also keep in mind that the “Monte Carlo Method” described herein is a small

subset of the broader use of Monte Carlo methods for which an excellent overview can be

found in the book by Landau and Binder (2000).

4.2 History of the Monte Carlo Method

This section describes the history and development of the MC method. The basic features of

the model are described as needed.

The Monte Carlo method as known in the materials community is an adaptation of a method

used primarily to study the statistical physics of phase equilibria (Landau and Binder 2000).

The name “Monte Carlo” was coined by Metropolis (inspired by Ulam’s interest in poker)

during the Manhattan Project of World War II, because of the similarity of statistical

simulation to games of chance, and because Monte Carlo, the capital of Monaco was a center

for gambling (http://csep1.phy.ornl.gov/mc/node1.html). Monte Carlo now refers to any

method that utilizes sequences of random numbers to perform statistical simulation. The main

requirement to use Monte Carlo method for simulation of a physical system is that it must be

possible to describe the system in terms of probability density function (PDF), also called

partition function (Z). Once the PDF or Z for a system is known, then the simulation begins

by random “sampling” from the PDF, and subsequently determining the desired properties of

the sample by conducting some kind of a “trial”. There must be a rule available, based on

some reasonable mathematical and/or physical theory, to decide the outcome of such a trial.

Many trials are conducted and outcomes of all of these trials are recorded. The final step in

the MC method is that the behaviour of the overall system is obtained by computing the

average of outcomes of the trails conducted.

MC methods are used in many different ways e.g. as a technique of integration of a function,

as a way to model stochastic (random) processes, as tool to calculate properties of state such

as E, T, P, and V , and as a model to simulate a system of interacting particles e.g.

ferromagnetic materials. In materials science, however, the MC method has been primarily

applied to simulate microstructural evolution where equilibrium occurs on a local basis at

best (e.g. at triple junctions). In general, the system is far from equilibrium and we attempt to
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study the kinetics of the processes that lead to equilibrium as a function of time e.g. grain

growth or recrystallization. Although the model has proven to be useful for many different

problems, it is important to understand that its ability to simulate physical behavior at the

continuum (or mesoscopic) level is heuristic. One notable exception to this remark is recent

work that has demonstrated rigorously that interfacial velocity is linearly related to the

curvature of the interface (Holm 2002).

4.2.1 Ising and Potts Models

The genesis of the method lies in solid state physics community and the development of

models for ferromagnetic materials. The Ising model (1925) represents a magnetized material

as a collection of spins where only two states are possible, namely up or down. Potts (Potts

1952) later generalized the Ising model and allowed for Q states for each particle in the

system, hence the term “Q-state Ising model.” It is the Potts model that has been used most

extensively to simulate mesoscopic (where the length scale is of the order of the grain size)

behavior of materials such as recrystallization, grain growth and texture evolution. While we

will describe the algorithms for solving the Ising model, as the Ising model is the simpler of

the two, it should be noted that the same algorithms are equally applicable for solving the

Potts model with some modifications to accommodate the Q states.

In both models, neighboring spins interact with each other through a contribution to the

system energy: if the spins are the same, no interaction energy is contributed (ground state)

whereas a difference in spin leads to a (positive) contribution to the system energy. The

system is symmetric in the sense that the minimum energy condition is reached when either

all spins point up or all point down. If there are N interacting particles and each particle has

two states (“up” or “down” in Ising model) then the system as a whole has 2
N
 possible states

in which it can exist. The problem is to be able to determine the behavior of such a system at

a temperature T and predict the properties of the system at equilibrium configuration.

Consider a system that is in contact with a thermal reservoir with infinite heat capacity so that

energy exchange between the system and the reservoir occurs at constant T. The precise

nature of the reservoir is not very relevant and it can be viewed as consisting of an infinitely

large number of copies of the system that we set out to study. For the reservoir as well as for

the system, V, N and T are fixed and E can vary between 0 and ∞. The assembly of systems

within the reservoir is referred to as a (macro)canonical ensemble (Pathria 1972). The

question now is: what is the probability Pi that the system is in state i, with energy Ei at any

time t? The Monte Carlo approach consists of generating a series of possible macrostates i, j,

… such that the probability Pi that the system is in state i within the state space, is given by

an appropriate PDF. Such a distribution is called a canonical distribution given according to:
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The next step is to determine equilibrium properties of the canonical ensemble such as energy

and magnetization. The energy associated with each state depends on the exchange energy of

the particles and interaction of the particles with the external magnetic field. However, in the

absence of an external field, system energy is dependent only on the spin exchange energy, E:
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where J is the energy associated with a dissimilar pair of spins, δ is the Kronecker delta, Si is

the spin on the i
th
 site (S={0,1}), z is the coordination number of each grid point, N is the

number of points in the grid and the factor of one-half compensates for counting each pair of

spins twice.

For a given temperature T and spin exchange energy J, the system will approach an

equilibrium configuration with a consequent system energy E and an order parameter m (m is

the expectation value of the magnetization of the system at temperature T) In the Ising model,

m is determined from the following implicit equation:

m = tanh [β(zJm + H)], (4)

where β  = (1/kBT ), z is the number of nearest neighbour spins and the quantity H  is

proportional to the external magnetic field, but has units of energy. Equation 4 must be

solved numerically to obtain the actual value of m. It is clear from Equations (1) – (4) that the

behavior and properties of a system in the Ising model depend critically on the values of J

and T.

It is noted here that the Ising spin model does not determine the dynamics of evolution i.e.

there is no reference to how long it takes for the system to approach the equilibrium

canonical distribution. The dynamics of the Ising model were subsequently determined by

Kawasaki (1972) for a conserved order parameter spin transition and by Glauber (1963) for a

non-conserved order parameter approach. The two approaches vary in the way the system’s

structure evolution is handled as shown schematically in Figure 1.

↑↓↑↓ ⇒ ↑↑↓↓ ↑↓↑↓ ⇒ ↑↑↑↓

(a) Order parameter conserved: (b) Order parameter not conserved:

      spin exchange, Kawasaki dynamics.        spin flip, Glauber dynamics.

Figure 1: Schematic representation of (a) order parameter conserved, and (b) order

parameter not conserved spin transitions.

In Fig. 1 above a simple Ising one-dimensional model is shown schematically. In Fig. 1a, the

second and third spins simply exchange their spin orientations so that the total number of Up

and Down spins is not changed during the transition. On the other hand, in Fig. 1b, the second

site reverses its spin to line up in the direction of spins of its neighbors on either side. In this

case, the order parameter is not conserved, as there are now 3 Up spins and 1 Down spin in

the system. Essentially all applications of the Monte Carlo method to microstructural



Chapter 4: Monte Carlo Modeling of Grain Growth and Recrystallization, A.D. Rollett & P. Manohar

printed on: December 14, 2003 4

problems have used the latter, non-conserved Glauber dynamics: one crystal in a polycrystal

can obviously grow at the expense of its neighbor such that the volume of a particular

orientation is not conserved. Conserved Kawasaki dynamics are useful in magnetism

problems where extensions of the Ising model continue to be studied.

For a system with large numbers of particles, it is extremely complex to analytically solve

Equations (1) – (4) above. To deal with this problem, Metropolis et al. (1953) proposed an

algorithm to solve these equations using Monte Carlo method. The Metropolis algorithm for

the solution of the Ising model using the Monte Carlo method is described in the following

section.

4.2.2 Metropolis Algorithm

At this point it is useful to introduce the procedure for changing the state of a MC model. The

simulation begins by initializing an array of lattice sites, with nearest neighbor interactions

that depends upon the state (or spin) of the neighboring sites. The Metropolis algorithm is

then enforced on such an array. The key steps of the Metropolis algorithms are as given

below (Landau and Binder 2000):

1. Choose a site i at random

2. Calculate the energy change ∆E (using Eq. 3) associated with changing the spin at the

i
th 
site

3. Generate a random number r such that 0 < r < 1

4. If r < exp (-∆E/kBT), flip the spin

5. Increment time regardless of whether a site changes its spin or not

6. Go to 2 until sufficient data is gathered.

There are several important points to be noted here to elucidate the procedure. First of all, the

changes are made on an individual site basis where the choice of site is random in time (Step

1) in contrast to other models where simultaneous updating of all sites is the norm (finite

difference, finite element, phase field, some types of cellular automata). Secondly, the ∆E

mentioned in Step 2 depends upon the states of the neighbors and the number of neighbors

depends on the assumed lattice structure as discussed in more detail in Section 4.3.4. In Step

4, the transition from one state to another at any given site is calculated by a transition

probability given as exp (-∆E/kBT). This is in accordance to Equation 1. There are different

schemes to determine the transition probability as discussed below. The transition probability

is then compared to a random number that is generated in Step 3. This is a necessary rule to

simulate the roll of a dice or the “chance” involved in making the decision to change the

state. Finally, the time mentioned in Step 5 is not the wall-clock time of a program run, but

the simulation time in some arbitrary units. One iteration of the Metropolis algorithm

represents 1/N time increments. On average, N iterations are required for each site in the

lattice to have a chance to change its state and therefore, 1 unit of system simulation time

elapses after N iterations. This unit of simulation time is called Monte Carlo Step (MCS) and

represents an integer time increment. An alternative time accounting method is discussed in

section 4.2.3 that uses a continuous time increment.

The particular expression given here is the Metropolis method that is the one most commonly

used in materials simulations; see (Landau and Binder 2000).
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There is also the symmetric method that uses a hyperbolic tangent function. In simulations of

domain coarsening, this method yields similar results to the Metropolis method.

)/tanh()( kTEEp ∆−=∆ (6)

To gain an intuitive understanding of the transition kinetics, the influence of ∆E and T on

)( Ep ∆  is shown in Table 1.

Table 1: Influence of ∆E and T on kinetics and equilibrium state of a system.

T → 0

Zero Temperature

∆E ≥ 0

∆E < 0

P(∆E) → 0

P(∆E) → 1

Sys tem i s  in

equ i l ib r ium in

ground state, all

spins point in the

direction of H

T → ∞

Infinite Temperature

Any ∆E P(∆E) → 1 Sys tem i s  in

completely

disordered state as

entropy dominates

and spins are

randomly oriented

w.r.t. H

T < Tc
Tc is a critical

temperature below

which system orders

spontaneously,

Tc = 2.269185J/kB
for 2D, square, Ising

model

Finite Temperature

∆E ≤ 0

∆E > 0

P(∆E) ≥ 1

P(∆E) < 1 *

T  is expressed in

terms of the ratio

J/kB. Variation in T

leads to first order

(discontinuous) or

s e c o n d  o r d e r

(continuous)

transitions

T > Tc
Finite Temperature

∆E ≤ 0

∆E > 0

P(∆E) ≥ 1,

P ( ∆ E )  < 1, but

greater than * above

- as above -

The major inefficiency associated with the Metropolis algorithm is that during the late stages

of evolution (sparse systems), or for low temperatures, the transition probability approaches 0

at most sites so that the system evolves very slowly and many reorientation attempts are

wasted. This characteristic increases computation times. This weakness is substantially

mitigated at low temperatures by the n-fold way algorithm described in the following section.

4.2.3 n-fold Way Algorithm

The Monte Carlo method is very inefficient when applied in its basic form to large data sets

because of the sparseness of the problem to be worked. Once much coarsening has occurred
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in grain growth, or recrystallization is nearly complete, most sites in the lattice are

surrounded by sites of the same orientation, i.e. they are in the bulk of a grain. Therefore the

probability of their changing orientation is very low and expending computational effort there

is wasted. The crucial contribution of Bortz et al. (1975) was to propose a method for

eliminating the need to compute unsuccessful changes in orientation. The n-fold way

algorithm speeds up simulations by eliminating Steps 3 and 4 in the Metropolis algorithm

given above. The essential concept is that for a given state of the system, the spin-flip

transition probability for each of the lattice sites can be calculated before choosing a site to

flip. The spin-flip transition probabilities in a system will have certain specific values

depending on the configuration of surroundings and choice of lattice type. The energy

associated with site i is given according to the following modification of Eq. 3:

€ 

E i =
J

2
1−δSi S j( )

1

z

∑ + H Si( ) (7)

Class 1

Eold = 1

Enew = 4

∆E = +3

p(class 1) = exp(-3/0.4) =

5.5x10
-4

Class 2

Eold = 2

Enew = 3

∆E  = +1

p(class 2) = 8.2x10
-2

Class 3

Eold = 3

Enew = 2

∆E = -1

p(class 3) = 1.0

                     (a)                                              (b)                                             (c)

Figure 2: Three examples of different classes in the n-fold way algorithm for a two-dimensional,

square lattice Ising model.  Each class represents a different possibility for a change in configuration

of spins (or orientations when grain growth is considered).  The spins are shown in their initial

configuration and the transition probability is evaluated for changing (flipping) the central spin (from

up to down).

Consider a square lattice Ising model with four nearest neighbors (z = 4) and J = |H| = 1, and

kBT = 0.4. Based on the orientation of the reference spin and those of its neighbors and the

direction of the external field there are 10 distinct values of transition probabilities. The

transition probabilities are calculated using the Metropolis scheme, Eqs. 5 & 7. The different

possible values are termed classes in the n-fold way terminology. Three such classes and

their corresponding transition probabilities are shown in Figure 2. Three examples of

different classes and their initial orientation of the external field and spins are shown in

Figure 2. For Class 1, the external field is in the opposite direction to the spins while the four

neighboring spins are in the same direction as the central reference spin leading to Eold = 1. If

the central reference spin were to flip its spin direction, then it would align itself in the

direction of the external field, but would be anti-parallel to all four of its neighbors so the

H H H
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new Enew would be 4. The net change for this transition in energy (∆E) would be 4 –1 = +3.

The probability of this transition is then determined according to Eqs. 5 and 7 as shown in

Fig. 2, together with two additional examples. A similar analysis is required for all ten classes

of spin configurations.

The next step in the n-fold way algorithm involves sorting of the lattice sites into these spin-

flip transition probability classes. The sum of spin-flip probabilities for the entire system (Qn)

is calculated according to

∑=
=

n

j
jjn pnQ

1

(8)

where n = 1, 2, 3,…,10 are the number of classes of spin-flip transition probabilities, nj is the

number of sites in j
th
 class and pj is the spin-flip probability for that class. For a 2D isotropic

system with z = 4, there are 10 classes.  If anisotropy is introduced between the X- and Y-

axes, then there are 18 classes (Novotny 1995). To decide which spin to flip in the n-fold way

algorithm, a random number r(0,1) is generated and the k
th
 class is chosen based on satisfying

the following condition:

Qk-1 ≤ rQn < Qk. (9)

This procedure thus chooses classes according to their weight – classes with high p are

chosen more often, classes with low p are chosen less often, while those classes with

probability=0 will not be chosen at all. Thus sites internal to a domain or a grain that will not

flip (transition probability=0), are simply never chosen to flip in the n-fold way, thus

avoiding the rejections involved (Metropolis Step 4) in the conventional MC method. Within

the chosen class k, the particular site to be flipped is selected randomly from the nk sites that

belong to that class. Finally, the spin at the chosen site is flipped with probability 1 and this

eliminates Steps 3 and 4 in the Metropolis algorithm. The class of the chosen spin and those

of its nearest neighbors is then updated. The n-fold way algorithm may be described in the

following manner (Novotny 1995):

1. Generate a random number and increment the time by an appropriate amount.

2. Choose a class k that satisfies the condition given in Eq. 9

3. Generate a random number to choose one of the sites from class k

4. Flip the spin at the chosen site with probability 1

5. Update the class of the chosen spin and all of its nearest neighbors

6. Determine Qn
7. Go to 1 until sufficient data is gathered

The time increment in the n-fold way algorithm is explained in detail by Novotny based on

the concept of absorbing Markov chains. In effect, the time increment, ∆t, in the n-fold way

algorithm is correlated to the probability that the given system configuration will change to a

different configuration during the time increment:

€ 

∆t =
−ln r

Q
n

. (10)
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Eq. 10 is based on the assumption that the successful re-orientation of a site is described by

an exponential probability distribution, so that successive evolution steps are Poisson events.

It is useful to see exactly how the n-fold way speeds up the computation time. Consider class

1 as shown in Fig. 2. The transition probability for this class is calculated as 6.7x10
-3
. Hence,

on average, about 1/p(1) = 148 spin flip trials are required for a spin in class 1 to flip

successfully using the Metropolis algorithm. For sparse systems, a large proportion of sites

have a low transition probability and therefore Metropolis trials require long times in these

cases for successful flips whereas the n-fold way flips those sites in one attempt. One

drawback of the n-fold way algorithm is that it requires more memory than the standard MC

algorithm, because it needs to store the class tables and the list of sites that belong to each

class. Also, some computation time is spent in updating the class tables after every iteration.

A practical consideration is that, at high lattice temperatures, the advantage of the n-fold way

disappears because all sites approach similar activity levels. However, these restrictions are

now almost not relevant since the memory size of desktop computers is commonly 2 GB and

parallel computing is making inroads into computational materials science. For most grain

growth and recrystallization problems, the overall performance of the n-fold way algorithm is

much better compared to the conventional MC algorithm because the density of boundary

sites is low and typically decreases during a simulation.

This approach was adapted by Sahni et al. (1983) to the Q-state Potts model to take account

of variable activity in the system where Q is the number of possible spin numbers that an

individual grid point can take. The system activity, A, is defined as the sum of the separate

probabilities for each site for each possible re-orientation over all distinct spin numbers in the

system.

€ 

A = p j Si → ′ S i( )
j=1

Q−1

∑
i=1

N

∑ (11)

Here the subscript j indicates the counter for each possible new spin value, of which there are

(Q-1) possibilities at each site (since changing to the same spin is excluded). Based on this

definition, the time increment associated with each successful re-orientation is as follows:

r
A

Q
t ln

)1( −−
=∆ . (12)

This particular approach was, however, limited to zero temperature and uniform grain

boundary energy (i.e. a single value of J in Eq. 3). An important generalization of the n-fold

way was made by Hassold and Holm (1993) who pointed out that, although finite

temperature introduces a finite probability that a given site will switch to any of the (Q-1)

other possible orientations, most of the switching probabilities are known analytically.  Thus

the additional work of computing the activities at each site due to finite temperature is

minimized and a practicable algorithm was generated. For 2D grain growth, for example,

Holm found that the conventional Monte Carlo method was more efficient only when the

mean grain radius was less than 3 and computation efficiency increased monotonically as the

simulation progressed (Holm, Glazier et al. 1991). Even at high fractions of the critical

temperature, the n-fold way was more efficient for long simulation times.

It has been noted that the time scale depends on the number of distinct orientations or spins in

the system (Eq. 12). In reality, however, the rate of grain growth does not depend on the
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number of different orientations present initially. Therefore it has been suggested that the

time increment should be adjusted so as to remove the dependence on Q:

A

r
t

ln−
=∆ . (13)

4.3 Description of the Monte Carlo Method for Grain Growth & Recrystallization

4.3.1 Discretization of Microstructure

The Monte Carlo also uses a discretized representation of microstructure; however, site

interactions are energetically controlled. A continuum microstructure is mapped onto a two-

dimensional (2D) or three-dimensional (3D) lattice. Each lattice site is assigned a number, Si,

which corresponds to the orientation of the grain in which it is embedded. Lattice sites that

are adjacent to sites having different grain orientations are regarded as being separated by a

grain boundary, whereas a site surrounded by sites with the same orientation is in the grain

interior.

Figure 3. Diagram of the square 2D lattice, showing orientation numbers at each site and grain

boundaries drawn between sites with unlike orientations.  The circled site with spin value 9 has three

like neighbors when 1
st
 and 2

nd
 nearest neighbors are counted, and five unlike neighbors.  For

isotropic grain boundary energy, flipping this site from spin=9 to spin=4 would leave the number of

unlike nearest neighbors unchanged; thus ∆E=0 and the flip probability is one.

Each site contributes bulk energy, H(Si), to the system; in recrystallization modeling, H(Si) is

the energy stored at site i during deformation, analogous to dislocation densities in real

crystals. In addition, each unlike pair of nearest neighbors contributes a unit of grain

boundary free energy J to the system as already described.  Summing bulk and surface

energy contributions, the total energy of the system is calculated via the Hamiltonian

specified in Eq. 7.  In static recrystallization simulations, the stored energy per site is

assumed to be positive for initially unrecrystallized material and zero for recrystallized

material. When dynamic recrystallization is simulated, however, the stored energy at each

point is a function of both time and position.

4.3.2 Evolution of the Microstructure

The evolution of the structure is modeled by picking a site and a new orientation at random

from the set of allowable values. The change in total system energy ∆E for reorienting the
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site is computed, and the reorientation is implemented with the transition probability, p as

discussed in Section 4.2.2. It is important to note the difference between the meaning of

temperature in the context of the Monte Carlo model and the physical parameter relevant to

recrystallization. In the simulation, temperature governs the degree of disorder in the lattice,

and below some critical temperature Tc, dependent on the lattice type, the system orders

spontaneously. Only second order effects are observed for variations in simulation

temperature (Hassold, Holm et al. 1990) on the kinetics of grain growth. Because of this lack

of sensitivity to lattice temperature, much simulation work with model has been performed at

zero lattice temperature. The consequence of this is to simplify the transition probabilities as

follows.

€ 

p(∆E) =
1 if

0 if

 
 
 

∆E ≤ 0

∆E > 0
(15)

The usual procedure in Monte Carlo simulations is to start with a completely random

structure that corresponds to a structure obtained at infinite temperature. The structure may

then be evolved based on the manner in which it is cooled. One approach is to quench the

structure to a temperature below Tc and observe the evolution as the system approaches the

equilibrium ordered state. This is the so-called Quenched Potts model. When the quenching

temperature is low, i.e. T approaches 0, then the evolution rate is low and it would take long

time for the system to approach equilibrium. Therefore, an alternative approach termed

simulated annealing is used to evolve the structure. In this case, the temperature of the

system is lowered slowly and the structure is allowed to attain equilibrium at each

temperature step. The time steps needed to ensure slow cooling are proportional to exp(1/T)

such that, as the temperature decreases, the number of time steps needed increases

exponentially. In such cases, a fast simulated annealing procedure may be used, see Plischke

and Bergensen (1994) for more details.

One Monte Carlo time step (1 MCS) is typically defined as N reorientation attempts, i.e. each

site is given an opportunity to change orientation. The number of Monte Carlo Steps is

assumed to be proportional to physical time. Recently, it has been pointed out that this

definition results in a dependence on the Q value, i.e. the number of orientations in the

system. The higher the Q value, the slower the rate at which boundaries will move. This is

clearer in the definition of the time step for n-fold way in section 4.2.3 (Eq. 12).

4.3.3 Inert Particles

Particles are introduced into the simulation as sites which have an orientation different from

any of the grains and which cannot be reoriented during the course of the simulation.  An

individual particle may consist of a cluster of contiguous sites.  In 2D, single site particles are

effective but in 3D it is important to use a particle size that is comparable (or bigger than) the

interaction distance implicit in Eq. 3.  The particles do not react, dissolve or grow themselves

and hence are called inert rather than second phase particles or precipitates. This assumption

results in an equality of the particle-matrix interfacial energy and the grain boundary energy,

which is reasonable for particles that are incoherent with respect to the matrix.  Just as the

grain boundary energy can be made a function of the boundary type, so the particle-matrix

energy can be varied.  Also, the particles cannot move through the lattice, which means that

grain boundary drag of particles is not permitted (Ashby and Centamore 1968) . Results for

particle pinning effects are discussed in sections 4.9.3, 4.9.4.
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4.3.4 Lattices

Implicit so far in the discussion has been the connectivity of the points that represent the

discretized microstructure. It turns out that the lattice can have a strong effect on the results

of the simulation. A survey of lattice types for both two and three dimensions is available in

the thesis by Holm (1992). The grain boundary energy per unit length is anisotropic with

respect to the boundary orientation in the lattice. This anisotropy can be characterized by a

Wulff shape, which is directly related to the coordination number and symmetry of the

lattice.  Tables 2 and 3 list the lattice types with their geometries and the anisotropy of the

Wulff plot. The number in parentheses after the lattice type denotes the number of shells of

neighbors, such that square (1,2) means a square lattice with first and second nearest

neighbors.  The lattice type cubic (2*) denotes a simple cubic lattice with first, second, third

nearest neighbors and neighboring points located at [222].

Table 2. Listing of 2D lattice types with geometries and anisotropies.

Lattice Type Wulff Shape Coordination

Number

Anisotropy Grain

Growth

Square (1) Square 4 1.414 Inhibited

Triangular Hexagon 6 1.154 Normal

Square (1,2) Octagon 8 1.116 Normal

Triangular (1,2) Dodecagon 18 1.057 Normal

Figure 4: Diagram of the nearest neighbor relationships around a central point labeled 'A' in: (a)

triangular lattice with first nearest neighbors; (b) triangular lattice with 1
st
 and 2

nd
 nearest neighbors;

(c) square lattice with 1
st
 and 2

nd
 neighbors.

Table 3. Listing of 3D lattice types with geometries.

Lattice Type Wulff Shape Coordination

Number

Grain Growth

Cubic (1) Cube 6 Inhibited

Cubic (1,2) 18-hedron 18 Inhibited

Cubic (1,2,3) 26-hedron 26 Normal

Cubic (2*) 98-hedron 124 Normal
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fcc (1) Rhomboid

Dodecahedron

12 Inhibited

fcc (1,2) 18-hedron 18 Inhibited

hcp (1) Trapezoidal

Dodecahedron

12 Inhibited

The characteristic of many lattices that has been ignored by several authors is the tendency

towards self-pinning for grain growth (explained later) in simulations performed at zero

temperature. The last column in each table shows which lattices can sustain grain growth

without self-pinning and are therefore suitable for studies of microstructural evolution. For

example, in three dimensions, both of the close packed lattices, face centered cubic and

hexagonal, cannot sustain coarsening to long times.  The reason for this is a combination of

high lattice anisotropy tending to favor grain facets that lie on high symmetry planes, and a

tendency for kinks or steps in boundaries to anneal out with time.  If the microstructural

features that allow boundaries to move are lost, then it is not surprising that self-pinning

occurs. Finite temperature can be used, however, to maintain a population of kinks and steps

thereby allowing grain growth to proceed. In general it is advisable to use a finite temperature

in order to avoid faceting and loss of the kinks that allow interface motion to occur,

regardless of the particular lattice used.

If the grain boundary energy J is uniform for all boundary segments in a recrystallization

simulation, the triangular lattice is suitable for the simulation of recrystallization in two

dimensions (Srolovitz, Grest et al. 1986), and that the cubic (1,2,3) lattice is suitable in three

dimensions (Anderson, Grest et al. 1989). For other types of simulations, careful examination

for lattice effects must be made even for these lattices. Figure 3 shows a 2D triangular lattice
with boundaries drawn between regions of uniform orientation. Despite the availability of 3D

simulation methods, no substantial results have been reported for 3D Monte Carlo simulation

of recrystallization.

4.3.5 Boundary Conditions

It is common to use periodic boundary conditions on the spatial domain.  This has been

likened to modeling a circle or Möbius strip of points in 1D, or a set of points on a torus in

2D. The advantage of using periodic boundary conditions is that it avoids the singularity of

edges in a finite domain. The effect of such boundary conditions is illustrated in Figure 5.  A

point on the edge of the domain is connected to points on the opposite edge. The equivalent

effect can be obtained by copying the domain along all the edges. Care is needed if a

triangular lattice with an oblique two index-addressing scheme is used in order to avoid an

implicit shear from connecting the top and bottom edges of the lattice.
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Figure 5: Periodic boundary conditions illustrated for a 2D lattice with 1st and 2nd nearest neighbors.

The site in solid shading has 5 of its neighbors with similar index values and 3 of its neighbors on the

left hand side of the lattice.  The arrow indicates the connection from one side of the lattice to the

other.  The concept is easily extended into 3D.

Periodic boundary conditions are simple to implement and a natural choice when the initial

state of the lattice is artificial.  If, however, a microstructure has been measured

experimentally, e.g. by orientation imaging microscopy, and is used to initialize the lattice

then periodic boundary conditions are obviously inappropriate (Baudin, Paillard et al. 1999;

Cheong, Hilinski et al. 2003). The typical choice is to make each edge a mirror, which has

the effect of allowing boundaries to terminate at an edge but be able to slide along the edge as

dictated by the driving forces that act on them.

4.3.6 Parallelization of the Monte Carlo Algorithm

Since parallelization of the algorithm is largely concerned with boundary conditions, it is

appropriate to review the efforts that have been made in connection with the Monte Carlo

model.  Two main concepts are discussed here: one is based on dividing the simulation

domain into subdomains, and the second is based on the checkerboard approach (Holm,

1992).  Lubachevsky (1987, 1988) proposed parallelization of the Ising model based on an

asynchronous scheme. Korniss et al. (1999) developed a parallel MC model for studying

magnetic domains using Lubachevsky approach, described in more detail below. In complete

contrast to the subdomain approach, Miodownik (2000) used the checkerboard approach in

which a subset of the pixels is operated on, chosen such that in each time-step, each active

pixel (or voxel) has no nearest neighbors that are operated on simultaneously.  Given that

each active pixel is independent of all others, the work of deciding what flip to perform can

be distributed across processors without any need for communication between them: only the

results of each individual flip must be recorded in memory.  At the next time step, the origin

of the checkerboard is translated by one pixel and the next subset of (spatially independent)

pixels is operated on.  Implementation of the n-fold way method was not possible with this

approach.  Also, the particular simulations involved required high lattice temperatures in

order to avoid problems associated with faceting of grain boundaries in configurations where

they are pinned by second-phase particles.  At high enough lattice temperatures, as noted

elsewhere, the high rate of flips associated with positive changes in energy is high enough to

nullify the advantages of the n-fold way and the standard MC method is more efficient.
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The main ideas involved in the asynchronous parallelization of the n-fold way algorithm for

Ising-like systems are as follows.  The first step in parallelization involves dividing the

simulation domain into suitably sized pieces for each processor to work with. One such

example of domain decomposition is shown in Figure 6 below.

    PE0   PE1 PE2

   PE3  PE5

   PE6   PE7            PE8

Figure 6: Domain decomposition in parallel processing. In the example shown in the figure, a global

simulation domain size of 12 x 12 sites is divided up into 9 processors, each carrying a local

simulation domain size of 4 x 4 sites. Note that the sites situated at a processor corner (e.g. horizontal

lines) have some of their neighbors located on three other processors (gray), sites at a processor

boundary (vertical lines) have some of their neighbors residing in one other processor while sites

within the kernel of the local domain (solid) have all of their neighbors within the same processor.

The numbers shown are the processing element (PE) or processor ID numbers.

Each processor works on its piece of simulation domain with its local simulation time. When

a processor chooses a site that is situated on a processor boundary or a corner, special care

must be taken to ensure that the simulation trajectory is not corrupted. This is achieved by

allowing a border or corner site update only if its local simulation time is less than or equal to

the local times of all the corresponding processors that carry its neighboring sites. For

example, in Figure 6, if the processor 0 has chosen the diamond-patterned site to update, then

this update will be evaluated only when the local simulation time of processor 0 becomes less

than or equal to the local simulation time of processors 1, 3 and 4 that carry the neighboring

sites marked with circles. Until this happen, processor 0 must wait. Lubachevsky and Korniss

et al. defined a special class for boundary and corner sites to handle PE boundaries. The

activity of all of the PE boundary and corner sites was always set to 1. Assigning a high

weight to PE boundary sites leads to PE boundary sites being picked more often and this

compensate for the waiting at the PE boundaries This procedure ensures comparable

evolution kinetics of the kernel and boundary sites. The time increment in the parallel n-fold

way is as follows:
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Where Nb is the total number of sites on PE boundaries.

The parallel n-fold way algorithm based on the asynchronous approach is then stated as

follows:

1.  Select a class based on Eq. 9. Note that in parallel, asynchronous n-fold way, PE

boundary sites have a class of their own as explained above.

2.  (a) If the chosen site is in kernel, flip it with probability 1 and go to Step 3

     (b) If the chosen site is in the boundary class, then wait until the local simulation time

of this updates becomes less than or equal to the local simulation times of the

neighboring PEs. When this condition is satisfied, evaluate the environment, compute

the transition probability and flip with Metropolis probability, Eq. 5. Go to Step 3.

3.  Update tabulation of spin classes in kernel

4.  Determine time of next update based on Eq. 16

5.  Go to 1 until sufficient data is gathered.

4.4 Nucleation in Recrystallization

Nucleation presents several challenges at the level of mesoscopic simulation of

microstructural evolution.  It has long been known (Martin et al. 1997) that homogeneous

nucleation is impossible and that for all practical purposes new grains arise from the existing

deformation microstructure.  The subgrain structure and other relevant features of the

deformation microstructure have, however, a characteristic length scale on the order of 1 µm

or less (Miodownik et al., 1999).  This is more than an order of magnitude smaller than the

typical grain size after recrystallization (10 to 100 µm) and so it is impracticable to model the

nucleation process is detail.  New grains must be introduced deus ex machina according to

empirical rules for their location and orientation, as described below.  There are two

exceptions to these remarks.  One is work by Radhakrishnan et al. who have studied

combined models of plastic deformation and recrystallization (Radhakrishnan et al. 1998;

Sarma et al. 2002).  The second is work by Holm et al. (2003) on modeling the process

subgrain coarsening in detail which has led to a theory of nucleation of new grains, discussed

in more detail below in section 4.9.1 on abnormal grain growth.

From an algorithmic point of view, the fact that recrystallization introduces new grains means

that it is not practicable to work with a fixed list of orientation values as can be done in grain

growth, wherein the maximum numbers of grains occurs at time zero. Therefore it is

convenient to introduce each new grain with a unique orientation value. Alternatively, the

range of orientation values can be partitioned into recrystallized and non-recrystallized sets.

Nucleation is accomplished by introducing new (recrystallized) grains into the simulation

with orientation numbers chosen from the appropriate set. The computational efficiency of

the continuous time method is unaffected by this characteristic of recrystallization

simulations.

Nucleation of recrystallized grains is modeled by adding small embryos to the material at

random positions at the beginning of the simulation (i.e. site saturated nucleation) (Srolovitz,

Grest et al. 1986). The stored energy is set to zero at each site belonging to the embryo.

Adding embryos at regular intervals during the simulation simulates continuous nucleation.

In both cases the effective nucleation rate decreases with time because, at long times, most of

the available space has been recrystallized and has zero stored energy; embryos placed in

recrystallized material will shrink and vanish. Dynamic recrystallization is modeled by
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adding stored energy to each lattice point continuously (Rollett, Luton et al. 1992). This

means that it is not possible to distinguish between recrystallized and unrecrystallized

material after the first cycle of recrystallization is complete. The process of work hardening

starts anew with each new grain, which means that the stored energy at any given point is

related to the length of time that has elapsed since the nucleation event associated with that

grain.

Embryos have orientations that differ from those of all other grains and particles as discussed

above. If the bulk stored energy H is too small, the embryos are sub-critical and shrink away.

The value of H required for embryo growth depends on its surroundings and on the lattice

being used. Above some critical H/J, an isolated embryo is super-critical and can grow as a

new grain nucleus. Below that H/J, the embryo must be adjacent to an existing grain

boundary in order to become a nucleus; its growth then occurs preferentially along the prior

grain boundaries. In the 2D triangular lattice, homogeneous nucleation cannot occur for H/J <

2. Embryos of two lattice sites can grow when 2 ≤H/J < 4. Single-site embryos can grow

when H/J ≥ 4.

Table 4. Critical Embryo Sizes in the MC model for Recrystallization (Holm 1996)

Stored Energy: Boundary Energy Critical Size (lattice sites)

2D, Triangular Lattice:

H/J < 2 (Very large)

2 < H/J < 4 2

4<H/J < 6 1

H/J > 6 (Any embryo grows)

2D, Square Lattice,

with 2
nd
 nearest neighbors:

H/J < 1 (Very large)

1 < H/J < 2 3

2 < H/J < 8 1

H/J > 8 (Any embryo grows)

3D, Simple Cubic lattice,

with 2
nd
 and 3

rd
 nearest neighbors

H/J < 3 (Very large)

3 < H/J < 5 5

5 < H/J < 8 3

8 < H/J < 26 1

H/J > 26 (Any embryo grows)

4.5 Initialization of MC Simulations

The 2D MC recrystallization simulations reviewed here were typically initialized with a

microstructure obtained from grain growth simulations (Anderson et al. 1984; Srolovitz et al.

1984). Grain growth for a period of 103 MCS in a domain size of 200 x 200 sites yields a

microstructure with approximately 1000 grains and a mean grain area of approximately 40

sites. Whether new grains placed in the structure survive and grow will depend on their

spatial location because prior boundaries act as heterogeneous nucleation sites (Srolovitz et

al. 1988). If second phase (inert) particles are required, single-site "particles" are randomly

placed within the microstructure to obtain a certain area fraction. The typical method is to
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assign particle sites an orientation number that is not permitted to change during a simulation.

The stored energy is initialized to the desired value for each site. It is also reasonable to start

with no prior grain structure, which is equivalent to having a single crystal. The survival and

growth of new grains is then independent of spatial location in the lattice.

Another interesting aspect of initialization is how to represent experimentally measured

microstructures. Several authors have recently reported using experimental orientation maps

to specify the initial state of the model (Baudin et al. 1999; Cheong, et al. 2003). These maps

are currently obtained from automated electron back-scatter diffraction (EBSD)

characterization of metallographic specimens in a scanning electron microscope (SEM). The

transfer is exceptionally simple because the size of the maps is well within the capacity of

modern 2D MC codes. It is also noteworthy that Demirel et al. (2003) made a direct

comparison of experimentally characterized grain growth with simulations albeit using a

finite element code rather than an MC model. They were able to demonstrate that it was

essential to include the anisotropy of the grain boundary properties in order to obtain a good

agreement between simulation and experiment.

In three dimensions, the challenges of devising accurate representations of microstructure are

considerable. Miodownik et al. (1999) have used a simulated annealing procedure (see

Section 4.2.3) to match a misorientation distribution to a measured distribution. More

recently Saylor et al. have extended this concept to the specification of 3D initial structures

that reproduce measured grain shape, orientation and misorientation distributions, again

based on EBSD measurements (Saylor et al. 2003).  Figure 7 shows an example of a 3D

microstructure generated by matching EBSD orientation maps on orthogonal sections of a

recrystallized aluminum 1050 alloy. This statistical approach opens up the possibility of

being able to perform simulations of microstructural evolution that can be compared directly

with experimental measurements.
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Figure 7: 3D model microstructure generated by fitting ellipsoids to measured grain shapes in a

sample of aluminum 1050 alloy and then associating orientations with each grain such that both the

average texture and the average grain boundary character corresponds to the experimental

measurements (Saylor et al., 2003).

4.6 Verification of the Monte Carlo Model

An important aspect of any model is to verify that it behaves as expected. This is not a trivial

issue for this model because most of the basic features governing grain growth are not

imposed on the model. For example, there is nothing in the formulation given above to

guarantee that the migration rate of boundaries is proportional to the driving force, or that

local equilibrium is maintained at triple junctions between the surface tensions.

The most basic verification that the model works as desired is to simulate a single isolated

grain shrinking under the action of the curvature of its boundary. Mullins’ (1956) analysis

shows that, for velocity proportional to mean curvature, the rate of change of area, dA/dt, of

any grain is constant and equal to the integral of the turning angle around the perimeter of the

grain. In the case of a grain with n vertices, this leads to the expression:
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€ 

dA

dt
= −2πMγ(n − 6), (17)

where M is the mobility, and γ is the grain boundary energy.  For an isolated grain with one

side, the rate of area change is constant.  The reason for 6-sided grains being neutral is that,

for isotropic grain boundaries, the turning angle at a three-fold vertex (triple junction) must

be 60°.

To test this relationship for the case of n=1 is simple because the multi-state model collapses

to the Ising model with one grain isolated within another grain. In either 2D or 3D, the result

is the same, i.e. that dA/dt is constant (and negative). Recently, Holm has verified (Holm

2002) that the rate of collapse of the isolated grain is exactly equivalent to motion by

curvature for the case of a 2D square lattice with first nearest neighbors.   This is also

important because it verifies that the model satisfies the relationship

V = M P, (18)

where V is the boundary velocity, M is the mobility, P is the driving pressure, taken here to

be the product of boundary energy and curvature, P = γκ.

A second test of the model is to examine grain growth kinetics in a polycrystal.  Classical

theory states that the average grain area, <A>, should vary linearly with time:

<A> - <A>t=0 = kt. (19)

This is justified on the basis of the observed self-similarity of the microstructures, which

simply means that snapshots taken at different times can only be distinguished if either a time

or a length scale is provided. More specifically, self-similarity means that the average

curvature in the system scales with the inverse grain size. This permits a simple differential

equation to be solved as follows:

d<R>/dt = k <κ> = k<R>-1

d<R><R> = k dt

Therefore,

<R>
2
 = kt + C. (20)

Thus the predicted exponent on area is one (or two for grain diameter).  Provided that self-

pinning does not occur (through poor choice of lattice) the exponent obtained from MC

simulations is very close to one.  There has been considerable attention paid to this point

because the earliest results suggested an exponent slightly less than one.  Various authors

have ascribed this discrepancy to either a too small simulation domain, incorrect choice of

switching algorithm (Radhakrishnan and Zacharia 1995), or to improper regression analysis.

Nevertheless, the MC model is sufficiently robust that, provided a reasonable choice of

lattice, domain size, and method of regression analysis is made, then the expected theoretical

grain growth kinetics will be obtained.  A more complex issue in grain growth is that of grain

size distributions which space does not permit us to review in detail here.  Suffice it to say

that the distributions observed in 2D MC simulations correspond closely to experimental
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observations (Srolovitz et al. 1984) and that, as of the time of writing, the theoretical basis for

size distributions is still an active topic of discussion in the literature.

Another way of looking at the connection between polycrystal coarsening and motion by

mean curvature is to examine the link between topology and size. There is a strong

correlation between topological class and size that is known in both the experimental

literature (Feltham 1957; Aboav and Langdon 1969) and for the MC model (Srolovitz et al.

1984). The nearly linear relationship between size and number of sides of a grain provides a

direct link between the (n-6) rule, Eq. 17, and the mean field equation for growth rate of an

individual grain, below. It is this connection that Hillert exploited to derive his seminal

theory of grain growth based on the Lifshitz-Slyozov-Wagner theory of coarsening.









−−=
RR

k
dt

dR

critical

11
(21)

In recrystallization, there are two basic verifications of the model.  The first is that the driving

forces of curvature and stored energy can be set in opposition to one another.  In the context

of the isolated grain, this means that the Gibbs-Thomson effect can be verified: in other

words, for a given grain boundary energy (set by J) and stored energy (set by H) there should

be a grain size that neither shrinks nor grows. This is indeed the case for the MC model as

has been verified (Rollett and Raabe 2001).  Figure 8 shows the result of simulating the

behavior of a single grain with an initial radius of eight sites and a range of stored energies

associated with the sites surrounding the single grain.  For a large enough stored energy, the

grain radius grows with constant velocity as expected, Eq. 18.  For small stored energies, the

grain shrinks under capillary pressure.  At some intermediate stored energy the size is

metastable: fluctuations on either side will lead to growth or shrinkage.
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Figure 8: Plot of radius of single grain versus time for various bulk energies showing the Gibbs-

Thomson effect.  For large stored energies, the grain grows and vice versa; for an initial size of 5 sites

and a stored energy of about one, the grain neither grows nor shrinks although the metastability of the

equilibrium is reflected in the fact that any deviation in size will lead to either growth or shrinkage

(Okuda, 2002).

The second verification is to perform simulations of recrystallization and compare the

kinetics against the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory. This has been done

by several investigators (Srolovitz et al. 1986) and extensions of the model have been made

in order to explore experimentally observed deviations from the expected kinetics (Rollett et

al. 1989).  The slopes observed in KJMA plots correspond to the expected theoretical values

for a variety of nucleation and growth morphologies.

4.7 Scaling of Simulated Grain Size to Physical Grain Size

Most computer simulations require significant amounts of computer time so it common

practice to minimize the size of the lattice that is used.  Therefore it is useful to analyze the

relationship between grain size in the Monte Carlo recrystallization model, and physical grain

sizes (Rollett et al. 1992).  As of the time of writing, increases in computer power have made

it feasible to perform simulations in a few hours on desktop computers with more than a

million grid points over simulation times of many millions of MCS.

We will assume that the ratio of stored energy to grain boundary energy per unit volume can

be equated in the model and in real, physical recrystallization process. The physical process

has two characteristic driving pressures for boundary migration, Pstore and Pgrgr. The stored

dislocation content typically yields a Pstore of 10 MPa. For grain growth driven by grain
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boundary curvature, Pgrgr = γ/<R>, where γ is the grain boundary energy per unit area, and

<R> is the mean grain radius. In the 2D triangular lattice, the stored energy per unit area is

given by Pstore=H/[3 s2 sin (60°)] where s is the unit boundary length on the lattice. The stored

energy due to boundary curvature is

€ 

P
grgr =

γmodel

< R >model
=

J

s < R >model
. (22)

The initial grain size in the Monte Carlo simulations is typically about 6s. Thus, for the

model

€ 

P
store

P
grgr

=
H < R >

model

3sJ sin60°
= 2.5

H

J
. (23)

Using a typical value for the grain boundary energy, γ = 0.5 J.m-2, for physical systems

€ 

P
store

P
grgr

= 20 < R > µm−1
. (24)

Equating the energy densities for the model and physical systems and rearranging gives

<R>!=!0.125 H/J µm. (25)

Then for a typical simulation with H/J = 2, we can estimate <R> = 0.25 µm, which is a small

but not unphysical grain size. Clearly, however, it would be preferable to simulate

recrystallization with lattices with linear dimensions an order of magnitude larger than is

currently typical.

4.8 Recrystallization Kinetics in the Monte Carlo model

A characteristic of the Monte Carlo model of recrystallization is that a finite recrystallized

volume is introduced at the beginning of simulations when site saturated nucleation

conditions apply. This becomes apparent in a KJMA plot as a curvature at early times. A

simple correction may be made for the finite initial fraction transformed by adding a constant

to the measure of time. The correction is of course heuristic because it depends on the results

themselves.

A limitation of the Monte Carlo model is that the growth rate of recrystallized grains is not

linearly related to the stored energy density. As with nucleation, each integer increment of

H/J leads to a discrete change in the number of sites that can change orientation with a neutral

or negative change in system energy.

4.9 Results of Simulation of Recrystallization by Monte Carlo method

The section provides a review of a number of areas in which useful results have been

obtained from recrystallization simulation using the Monte Carlo method. Note that all the

results discussed here are for two-dimensional simulations only.
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4.9.1 Abnormal Grain Growth

The early stages of recrystallization are labeled as nucleation even though no new phase

appears in the material. At the level of the dislocation structure, however, the existing

heterogeneities of the deformed structure coarsen in the process known as polygonization.

The heterogeneities exist at several length scales from cells to shear bands to prior grain

boundaries. Many observations have been made which suggest that individual subgrains

acquire a growth rate advantage over their neighbors and become identifiable as new grains.

This growth advantage can result from a difference in mobility between the boundary of the

new grain and the boundaries in the surrounding material. This process of competitive growth

has been observed in the Monte Carlo model in both 2D (Rollett et al. 1989) and 3D (Grest et

al. 1990) simulations. By altering the rate at which sites are sampled for reorientation, the

mobility of specific grain boundaries can be varied. Small ratios in mobility between one

grain and another lead to marked abnormal grain growth behavior (Rollett and Mullins 1996),

which may correspond to the early growth of new grains in recrystallization. Holm et al.

(2003) have recently derived a theory for the frequency of abnormal grains as a function of

orientation spread and the characteristic angle at which the grain boundary mobility

transitions from low to high values. The key feature of the simulations carried out in this

work was that coarsening in microstructures based on a single texture component with a

realistic spread in orientation of the subgrain structure will occasionally exhibit abnormal

grain growth. It turns out that if a particular grain has the topology required for growth (more

than six sides, for example) and happens to be at the edge of the orientation distribution such

that its perimeter possesses a high misorientation, it will grow much faster than the average

size of the matrix.  Figure 9 shows a snapshot of the microstructure from such a simulation

after MCS.  High angle grain boundaries are drawn in solid black whereas low angle

boundaries are white.  Grains that have grown to sizes significantly larger than the average

size clearly tend to be surrounded by high angle, mobile boundaries.

Figure 9: Microstructure showing abnormal grain growth in a subgrain structure whose spread about

the cube orientation was 8°.  High angle grain boundaries (>10°) are drawn as black lines and low

angle boundaries (>1°) are white.  Large grains are associated with highly misoriented boundaries.

4.9.2 Static Recrystallization
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A key observation in grain growth is that an isolated grain will shrink and eventually vanish

in response to tendency to minimize grain boundary area. When an isolated grain can

eliminate stored energy by growing, however, it does so, provided that the grain is not

smaller than a critical size. In a polycrystalline structure with 0<H/J<1, any recrystallized

grain will grow at the expense of its neighbors because of the bias imposed on the unit step of

the grain growth process. That is to say, the motion of kinks along a boundary is reversible

when the change in energy associated with a step is zero, as is often the case for the 2D

triangular lattice; however, such energy neutral steps become irreversible when biased by the

elimination of stored energy at each step. Clearly, the Monte Carlo simulation of the motion

of recrystallization fronts is much closer to a deterministic model (e.g. cellular automaton)

than for grain growth.

The kinetics of recrystallization have been found to reproduce those anticipated from

theoretical analysis very closely. For example, in 2D simulations (Srolovitz et al. 1986) site

saturated nucleation conditions with a high enough stored energy density (H/J>2), a KJMA

plot of the fraction recrystallized versus time show a slope of 2 at long times; continuous

nucleation gives a slope of 3. Both results are as predicted from classical KJMA analysis. For

low stored energy densities (H/J<2), nucleation is heterogeneous in the sense that embryos

must be adjacent to existing boundaries in order to survive and grow.  In this case the kinetics

show significant deviations from the classical KJMA pattern (Srolovitz and Hassold 1987).

The key observation here is that the growth of new grains at low stored energies is highly

dependent on the prior structure. For H/J≤1, the recrystallization front grows out from a triple

point and is concave with respect to the unrecrystallized side. The net effect is that growth is

very slow in early stages of recrystallization.

Work by Martin (1994) with the Monte Carlo method has examined the effect of spatially

non-random distributions of nuclei under site-saturated conditions. This work used a variant

of the n-fold way in which only flips to nearest neighbor orientations were considered. Also,

a stored energy (as a scalar contribution to the system energy associated with each

unrecrystallized site) was not explicitly considered. Instead, once a recrystallized grain was

inserted, flips are allowed from unrecrystallized to recrystallized, but not vice versa, thereby

guaranteeing growth of the recrystallized regions. The main result was to demonstrate the

importance of the distribution of nuclei. Nucleation on a square lattice gave narrow size

distributions whereas (heterogeneous) nucleation on a coarse prior grain structure gave wide

distributions and non-compact grain shapes. Subsequent grain growth broadens the size

distribution and, as expected, grain shapes become compact.

4.9.3  Grain Growth in the Presence of Particles

Miodownik et al. (2000) applied a parallel version of the 3D model with the primary aim of

being able to perform simulations on particle pinning with large domain sizes. For the

problem of particle pinning that they studied, this was of crucial importance because they

needed to use particles larger than one voxel (a unit volume element) in order to avoid

thermally activated unpinning. Their result was instructive: in contrast to earlier 2D studies

(Srolovitz et al. 1984; Doherty et al. 1990) that suggested that particles pinned grain

boundaries more effectively than predicted by the Zener-Smith theory (Zener 1948), the new

3D results showed that the classical theory was indeed applicable. The difference between 2D

and 3D appears to be that in 2D, particles can remove curvature because a boundary can

effectively pivot about a particle. Thus the limiting grain size is similar to the nearest
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neighbor spacing, ∆2. In 3D, however, the effect of a particle on a boundary is more local and

so the limiting grain size is similar to the mean free path between particles.

4.9.4 Recrystallization in the Presence of Particles

Recrystallization with inert particles present is easily modeled by assigning sites orientation

values that cannot be changed. Although only the effects of single site particles have been

studied (Rollett et al. 1992) in 2D simulations (whereas particle shape and size has been

examined for grain growth (Hassold et al. 1990)), the results appear to be general, at least for

small particles. Large particles in physical systems have the effect of stimulating nucleation,

an effect that has not been addressed by microstructural simulations. Another worthwhile

extension of computer modeling of recrystallization would be three-dimensional simulations

because the interaction of boundaries with particles is quite different than in two dimensions.

During recrystallization simulation with sufficient stored energy (H/J ≥ 3 in the triangular

lattice) the recrystallization front can readily bypass particles regardless of particle size or

area fraction. Under these circumstances the recrystallization growth kinetics are unaffected

by particles. The overall kinetics is accelerated slightly, however, by heterogeneous

nucleation on particles.

At intermediate stored energies (1 ≤ H/J ≤ 3) nearly all recrystallization boundaries can move

past single-site particles. Boundaries with a very high particle density will stop moving.

However, the irreversible propagation of grain boundary kinks allows most boundaries to

achieve a configuration from which two kinks can join to move past single-site particles. The

presence of prior grain boundaries further enhances recrystallized boundary motion. In these

systems, boundaries intersect particles at random, and recrystallization kinetics are

substantially unaffected by particles, as shown in Figure 10, where a single recrystallized

grain shows unrestricted growth for H/J = 1. Larger particles may inhibit recrystallization in

this stored energy regime, however, since two boundary kinks cannot join directly.
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Figure 10.  Microstructures of a single recrystallizing grain growing into a matrix

containing inert second phase particles.  The last picture illustrates the effect of

periodic boundary conditions as the new grain wraps around the edges of the

simulation.

At low stored energies (H/J < 1) grain boundary energy governs boundary motion, and the

recrystallization front is strongly pinned by particles which leads to a much higher than

random density of particles on the recrystallization front. In these circumstances

recrystallization is strongly inhibited which usually results in incomplete recrystallization, as

shown in Fig. 13. When only small particle fractions are present, however, recrystallization

may go to completion because pinning does not occur until after the transformation is

complete.

In addition, prior grain boundaries may still enhance motion of recrystallized grain

boundaries, so that the recrystallized grains can grow (at low particle fractions) much larger

than the deformed matrix grains. This is sufficient to drive the recrystallizing grains past

some particles, but only if the matrix grain size is much smaller than the interparticle spacing.

In other words, recrystallization at low stored energy and at very low particle fractions is

similar to abnormal grain growth.

Grain boundaries undergoing curvature driven growth (both in the deformed state and after

complete recrystallization) rapidly acquire a higher than random density of particles which

then inhibits grain growth. If the recrystallized grain size is smaller than the critical grain

size, grain growth continues until pinning occurs and the microstructure is a normal grain

growth microstructure. However, when the recrystallized grain size is large compared to the

critical grain size, particle pinning occurs almost immediately following the completion of

recrystallization thus preserving the non-compact grain shapes and sharply peaked grain size

distribution that are characteristic of randomly distributed nuclei.
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Analysis of recrystallization in particle containing materials suggests that there are two

limiting values of particle drag; a low (Zener) value with a random density of particles and a

much higher value if particles have become highly correlated with the recrystallization front

(as in grain growth). The simulation results show both these behaviors, depending on the H/J

ratio. Figure 11 plots the density of particles on boundaries for two types of boundaries;

recrystallization fronts have a lower, near random spatial distribution of particles; general

boundaries exhibit a higher than random density, suggesting that they are more strongly

pinned. Experimental studies appear to show only the lower particle drag (Zener) as studied

by Ashby et al. (1969). A note of caution about the comparison is that boundary-particle

interaction is more complex in three dimensions than in two.

Figure 11.  Plot of the fraction of particles on either recrystallization fronts (solid

symbols) or on all boundaries (open symbols) for two different densities of nuclei –(a)

100 and (b) 1000 site saturated nuclei.

4.9.5 Texture Development

Tavernier and Szpunar extended the 2D Monte Carlo model of Anderson et al. (1984) to

account for the different boundary energies and mobilities expected for different texture

components.  They chose low carbon steel sheet as their model material and developed

parameters to account for eight different texture components. They found that the <111>

class of texture component tended to become dominant after a period of grain growth when

the simulations were run with high boundary energies between the <111> component grains

and other texture components.  They also simulated the recrystallization process by making

provision for the variation of stored energy and boundary mobility, depending on whether a

given volume of material is recrystallized or not.  Unfortunately many details of the key

parameters were omitted from their paper so that it is difficult to judge the success of their

efforts.  They also point out, reasonably enough, that there is very little experimental data

available for the variation of grain boundary energy and mobility over the general range of
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misorientations. This lack is currently being addressed by both simulation of grain boundary

properties (Upmanyu et al. 1998) and by experimental measurement (Yang et al. 2001;

Saylor et al. 2002).  More recently, Hinz & Szpunar have used the MC model to investigate

the role of special boundary types (coincident site lattice boundaries) on texture development

in electrical steels, especially with respect to the Goss texture, {110}<001>.

Holm et al. (2001) have investigated the development of grain boundary character as

quantified by the misorientation distribution during grain growth. They find that low energy

boundaries become strongly preferred during coarsening in 2D structures where the range of

orientation is limited to only one degree of freedom. In 3D coarsening with 3-parameter

orientations, however, even if the special boundaries based on CSL relationships are assigned

low energies, the grain boundary character does not reflect the energy distribution because of

the geometric constraints.

Recently Rollett (2003 JOM) has investigated the development of the cube texture

component in fcc metals.  The investigation was confined to grain growth with no stored

energy driving forces.  The initial microstructure was based on a microstructure from

simulations of isotropic grain growth.  A rolling texture was imposed on the structure except

for a small fraction of the grains that were assigned orientations close to the cube component.

A combination of a Read-Shockley model of grain boundary energy for low angle boundaries

and a broad maximum in mobility around a misorientation of 40°<111> with very low

mobility at low misorientation angles was used to describe the grain boundary properties.

For a sufficiently large ratio of maximum to average mobility, the cube component was

observed to increase markedly during grain growth.

Incorporating texture into the Monte Carlo model is straightforward although, as always,

symmetry (both crystal and sample-based) must be dealt with carefully.  The most efficient

way to proceed is to calculate all the grain boundary properties that could be required during

a simulation at the beginning and store them in a look-up table.  Each spin number of the Q

possible spins represents an individual orientation.  The required lookup table is then Q(Q-

1)/2 in then size for each property in order to account for all possible boundary types in the

system.

4.9.6  Texture

Although texture is a substantial topic in itself, it is perhaps helpful to the reader to provide a

basic introduction while providing references to the standard works.  Texture has to do with

how one quantifies the relationship between the crystal axes in a particular grain of a

polycrystal and a set of axes associated with the external shape of the polycrystalline body.

Most often the term texture is used in conjunction with x-ray pole figures which are the most

efficient experimental means of quantifying the average texture of a (polycrystalline)

material.  Most fundamental is the understanding that crystallographic orientation requires

specification of a rotation.  This rotation is most often used as an axis transformation in order

to express properties known in crystal axes into properties in the frame of the material.  In the

context of Monte Carlo simulations, orientations are used to determine the properties of grain

boundaries.  The second vital piece of information is that rotations can be expressed in a wide

variety of mathematical and not-so-mathematical parameterizations, all of which have three

independent parameters.  The standard symbol for orientation is “g” but other symbols are

used, especially for the less well-known Rodrigues-Frank vectors and quaternions.  The table

below provides a summary of commonly used approaches.  The entries are ordered by
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familiarity to materials scientists.  Specification of a plane and direction by Miller indices is

most intuitive but numerically awkward!  Euler angles are common because of the

convenience series expansion methods based on generalized spherical harmonics.  Serious

computational work, however, uses quaternions for speed and simplicity.  Axis-angle

descriptions are the most intuitive description of grain boundaries because of the intimate

connection to crystal geometry and Rodrigues-Frank vectors have some very attractive

features for both representation and for certain types of computation.  A few conversion

formulae are given in the table in order to provide some clarification of the meaning of the

parameters.  There are formulae available in the standard texts to convert between any pair of

representations (Bunge 1982; Kocks et al. 1998).

Name Parameters Conversion Formulae

Texture Component:

Specifies alignment of a

plane normal with a

sample direction (e.g.

ND) and a crystal

direction with, e.g. RD.

Each normal and

direction is, in effect, a

unit vector and they

must be perpendicular,

y i e l d i n g  t h r e e

independent parameters.

(hkl)[uvw]

E u l e r  A n g l e s :

The Euler angles specify

a triple of rotations

(transformations) about

the Z, X and Z

directions.  Many

variants of Euler angles

are known.

g = g(φ1, Φ, φ2)

€ 

aij =

cosϕ
1
cosϕ

2
−

sinϕ
1
sinϕ

2
cosΦ

sinϕ
1
cosϕ

2
+

cosϕ
1
sinϕ

2
cosΦ

sinϕ
2
sinΦ

−cosϕ
1
sinϕ

2
−

sinϕ
1
cosϕ

2
cosΦ

−sinϕ
1
sinϕ

2
+

cosϕ
1
cosϕ

2
cosΦ

cosϕ
2
sinΦ

sinϕ
1
sinΦ −cosϕ

1
sinΦ cosΦ

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

(Orthogonal) Matrix:

The coefficients of an

axis transformation are

defined by: 

€ 

aij = ˆ ′ e i • ˆ e j ,

where the e are the unit

basis vectors in the

primed and unprimed

coordinate systems.  All

columns and rows are

unit vectors which

reduces the number of

independent coefficients

to 3.

g  =

€ 

a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

 

 

 
 
 

 

 

 
 
 a =

b1 t1 n1

b2 t2 n2

b3 t3 n3

 

 

 
 

 

 

 
 
≡ Crystal

Sample

b
1

t
1

n
1

b
2

t
2

n
2

b
3

t
3

n
3

 

 

 
 

 

 

 
 

Axis-Angle:

The rotation axis is

specified by a unit

vector, n , and the

rotation angle by θ.  For

grain boundaries, the

rotation axis is often

s p e c i f i e d  i n

crystallographic terms

with a set of Miller

indices.

g = g(θ,n)

€ 

aij = δij cosθ + nin j 1− cosθ( ) + εijknk sinθ
k=1,3

∑
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grain boundaries, the

rotation axis is often

s p e c i f i e d  i n

crystallographic terms

with a set of Miller

indices.

Rodrigues-Frank

Vector:

The RF-vector is the

rotation axis but scaled

by the tangent of the

semi-angle.  In this

space, all rotations that

share a common rotation

axis lie on a straight

line.

ρ = {ρ1,ρ2,ρ3} =

tan(θ/2)n
ρ1

tan
Φ

2








sin

φ1 φ2−( )
2









⋅

cos

φ1 φ2+( )
2









:=

ρ2

tan
Φ

2








cos

φ1 φ2−( )
2









⋅

cos

φ1 φ2+( )
2









:=

ρ3 tan

φ1 φ2+( )
2









:=

Quaternion:

Closely related to the

Rodrigues-Frank vector.

The n i a re  the

components.   For

rotations, the quaternion

is always of unit length.

Be aware that the

quaternions representing

θ and 2!-θ  are the

negative of each other

but represent the same

orientat ion (2-to-1

mapping).

q={q1,q2,q3,q4}

={sin(θ/2)n1,

sin(θ/2)n2,

sin(θ/2)n3,

cos(θ/2)}

q1 sin
Φ

2








cos

φ1 φ2−( )
2









⋅:=

q2 sin
Φ

2








sin

φ1 φ2−( )
2









⋅:=

q3 cos
Φ

2








sin

φ1 φ2+( )
2









⋅:=

q4 cos
Φ

2








cos

φ1 φ2+( )
2









⋅:=

The next step in understanding and using texture is to become familiar with the characteristic

preferred orientations of the particular material and processing history of interest.  This is far

too broad a subject for treatment here and the reader is referred to Kocks, Tomé and Wenk

(1998) and Randle and Engler (2002) for detailed information and analysis.

From a mathematical point of view, the next step is to realize that rotations can be combined

together.  The simplest method is matrix multiplication: any pair of orthogonal matrices can

be (matrix) multiplied together to yield another rotation.  Note that group theory is very

useful in this context.  Less intuitive but just as useful are the methods of combining (or

‘composing’) two Rodrigues vectors or quaternions.  Two Rodrigues vectors combine to

form a third as follows where ρ2 follows after ρ1:

(ρ1, ρ2) = {ρ1 + ρ2 - ρ1 x ρ2}/{1 - ρ1•ρ2}. (26)

The algebraic form for combining quaternions is given as, where qB follows qA:
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qC = qA • qB

qC1 = qA1 qB4 + qA4 qB1 - qA2 qB3 + qA3 qB2
qC2 = qA2 qB4 + qA4 qB2 - qA3 qB1 + qA1 qB3
qC3 = qA3 qB4 + qA4 qB3 - qA1 qB2 + qA2 qB1
qC4 = qA4 qB4 - qA1 qB1 - qA2 qB2 - qA3 qB3 (27)

Now we can introduce the concept of misorientation, or the difference in orientation between

two crystals, to which the properties of boundaries can be related.  Mathematically, this is

just the combination of one orientation with the inverse of the other.  One very important

caveat must be noted here which is that the order in which the orientation and the inverse

orientation are combined is important: recall that matrix multiplication is not commutative.

One combination produces a rotation whose axis is in crystal coordinates whereas the inverse

order produces a rotation whose axis is in sample coordinates.  This is also important with

respect to the application of symmetry operators which will be discussed next.  The most

common approach, by far, is to write misorientations in crystal coordinates because that is the

physically more meaningful approach in almost all cases.  If the orientations are expressed as

matrices representing axis transformations, the misorientation is given by the following,

where superscript T denotes transpose:

∆g =   g2.g1T (28)

Similarly for quaternions, the expression is:

Also, to obtain a misorientation in crystal axes,

qC = qA • q
-1

B

q
C1
 = q

A1
 q
B4
 - q

A4
 q
B1
 + q

A2
 q
B3
 - q

A3
 q
B2

q
C2
 = q

A2
 q
B4
 - q

A4
 q
B2
 + q

A3
 q
B1
 - q

A1
 q
B3

q
C3
 = q

A3
 q
B4
 - q

A4
 q
B3
 + q

A1
 q
B2
 - q

A2
 q
B1

q
C4
 = q

A4
 q
B4
 + q

A1
 q
B1
 + q

A2
 q
B2
 + q

A3
 q
B3 (29)

Finally we must summarize the effect of crystal symmetry because there are many physically

equivalent descriptions of any misorientation because of the multiplicity of ways in which

crystal axes can be labeled.  The following expression summarizes the way in which smallest

possible rotation angle can be identified.  The formula for determining the smallest

misorientation angle, θ*, is as follows, where the symmetry operators, O, are drawn from the

set of n members of the (proper rotation) point group appropriate to the crystal symmetry:

!!

€ 

θ* =min cos−1
O
( i)
gBgA

−1
O
( j ) −1

2

 

 
 

 

 
 ,cos

−1 O
(k )
gAgB

−1
O
( l ) −1

2

 

 
 

 

 
 

 
 
 

 
 
 
,{i, j,k,l =1"n} (30)

Inspection of this expression will reveal that it can also be used to specify the misorientation

in a unique way.  In fact, one can chose specific symmetry operators in such a way as to

always locate the misorientation axis in a particular asymmetric unit such as the standard

stereographic triangle (SST) for cubic materials.  Finally, we note that the properties of grain
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boundaries (and other interfaces) very often depend also on the boundary normal in addition

to the misorientation.  This adds another two parameters to the three already required to

describe misorientation and boundary normals require additional computational effort in the

MC model (and which has not yet been implemented as of the time of writing).

4.9.7 Dynamic Recrystallization

Dynamic recrystallization has been successfully modeled with the 2D Monte Carlo model

(Rollett et al. 1992). In its simplest form, stored energy at each point of the lattice is

increased at a fixed rate and embryonic new grains are continually added at a constant rate.

The basic result is that temporal oscillations are observed both in the grain size and in the

stored energy, which is analogous to the oscillations in the flow curve, as shown in Figure 12.

These oscillations are observed over almost the entire range of recrystallization parameters

examined (energy storage rate, nucleation rate, initial grain size) and damp out over time

periods that decrease with increasing storage rate and increasing nucleation rate. The

oscillations in both grain size and stored energy have the same period but are out of phase by

approximately one quarter of a period. Examination of the simulated dynamic

recrystallization microstructures which were formed under the same conditions but with

different initial grain sizes shows that the evolution of the microstructure may be divided into

three distinct stages:  an initial microstructure dependent transient stage, an initial

microstructure independent transient stage, and a steady state stage. While necklace

nucleation was observed in these simulations under some circumstances, it is apparent that it

is not a necessary condition for grain refinement in dynamic recrystallization. This

phenomenon is associated with refinement of the relatively coarse initial microstructure and

over-damped oscillations in the flow stress. Therefore, even when there are no obvious

oscillations in the flow curve and no necklace nucleation is observed, dynamic

recrystallization cannot be precluded.

Figure 12.  Stress plotted versus strain for a range of rates of addition of stored energy in

a Monte Carlo model, Rollett (1992).  Note the oscillations observed in the simulated

flow curves whose period varies with the rate of addition of stored energy.
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It should be noted that the geological community had applied the Monte Carlo model to

dynamic recrystallization but had only examined the microstructural aspects. Jessel (1988)

described an adaptation of the Monte Carlo model for the simulation of deformation of

quartzite. Although the model is similar to the combined grain growth and recrystallization

model, the Jessel work used only differences in stored energy between sites to evaluate

transition probabilities for orientation changes.  In this form, the model is essentially a

cellular automaton (CA) model. Also, the only results given were for microstructural

evolution, with no attempt to investigate stress-strain relationships. The simulations were

used to investigate the development of texture (fabric in geological terms), based on the

Taylor model (strain compatibility enforced on all grains) with some degree of success.

Peczak and coworkers have investigated several aspects of the correspondence between this

type of simulation and have added several refinements to the model, see for example (Peczak

1995), in order to allow detailed comparisons with experimental data. They have modified

the nucleation process such that the probability of an embryo appearing in a region of high

stored energy is higher than for low stored energies. This has the consequence that the

effective nucleation rate increases with time as stored energy is added to the system and is

also position dependent during the simulation.  They have also modified the rate of stored

energy addition from the original constant addition rate to correspond to a Voce-type

equation (i.e. an exponential work hardening curve) with a saturation (asymptotic) flow stress

expressed in terms of temperature-compensated strain rate (Zener-Holloman parameter). By

making these modifications they have been able to reproduce many of the characteristics of

the phenomenon of dynamic recrystallization.  For example, the transition from multiple

peaks to a single peak in the flow curve occurs when the ratio of the initial to the steady state

grain size goes over 2.3. This is in agreement with Sakai’s experimental observations on the

effect of initial grain size on dynamic recrystallization in OHFC copper (Sakai 1995). The

relationship between the steady state grain size and flow stress in the model shows grain size

decreasing with increasing stress as expected; the slope is ~1, Figure 13, which is close to the

experimental value of 0.7 (Derby 1991).

Figure 13. Plot of asymptotic grain size against steady state stress derived from

Monte Carlo simulations, after Peczak (1995).

4.10 Summary

The principal methods for modeling the phenomenon of recrystallization have been reviewed.

In addition to the geometrical and analytical models, several methods of modeling

microstructural evolution during recrystallization are briefly described.  Many of the latter

examples illustrate to need to be able to model the local environment of grains.  In view of

the frequency with which the Monte Carlo model has been used in the literature, that method
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has been reviewed in more depth.  The characteristics of the various lattice types, the

Hamiltonians for the system energy, the transition probabilities, and the continuous time

method were briefly treated.  Key results from the simulation literature have been reviewed

and summarized.

4.11 Acknowledgements

Numerous discussions over the years with D.J. Srolovitz, Elizabeth Holm, A. Karma, Y.

Brechet, B. Radhakrishnan, S. Cheong, K. Okuda and others are gratefully acknowledged.

This work was supported primarily by the MRSEC program of the National Science

Foundation under Award Number DMR-0079996.  Additional support was provided by the

Computational Materials Science Network, a program of the Office of Science, US

Department of Energy and by the Programming, Environment and Training Program under

the auspices of the High Performance Computing Modernization Office of the US

Department of Defense.



Chapter 4: Monte Carlo Modeling of Grain Growth and Recrystallization, A.D. Rollett & P. Manohar

printed on: December 14, 2003 35

4.11  References

Aboav, D. and T. Langdon (1969). "The shape of grains in a polycrystal." Metallography 2:

171-178.

Anderson, M.P., G. Grest and D.J. Srolovitz (1989). "Computer simulation of normal grain

growth in three dimensions." Phil. Mag. B 59(3): 293-329.

Anderson, M. P., D. J. Srolovitz, G. S. Grest and P. S. Sahni (1984). "Computer simulation of

grain growth- I. Kinetics." Acta metallurgica 32(5): 783-791.

Ashby, M. F. and R. M. A. Centamore (1968). Acta metall. 16: 1081.

Ashby, M. F., J. Harper, et al. (1969). "The interaction of crystal boundaries with second-

phase particles." Trans. Am. Inst. Min. Engrs. 245: 413.

Baudin, T., P. Paillard, et al. (1999). "Simulation of the anisotropic growth of Goss grains in

Fe3%Si sheets (grade HiB)." Scripta Materiala 40(10): 1111-1116.

Bortz, A. B., Kalos, M. H., Lebowitz, J. L. (1975). "A new algorithm for Monte Carlo

simulations of Ising spin systems." Journal of Computational Physics 17: 10-18.

Bunge, H., Texture Analysis in Materials Science (1982). Butterworths, London.

Cheong, S. W., E. J. Hilinski, et al. (2003). "Grain Growth in a Low-Loss Cold-Rolled

Motor-Lamination Steel." Metallurgical and Materials Transactions: accepted for

publication.

Demirel, M. C., A. P. Kuprat, et al. (2003). "Bridging Simulations and Experiments in

Microstructure Evolution." Physical Review Letters 90: 016106.

Derby, B. (1991). "The dependence of grain size on stress during dynamic recrystallization."

Acta metallurgica 39: 955-962.

Doherty, R. D., K. Li, et al. (1990). Modelling of recrystallization kinetics and particle

limited grain boundary motion. Recrystallization 90, TMS-AIME Warrendale, PA.

Feltham, P. (1957). Acta metallurgica 5: 97.

Glauber R. J. (1963). “Time-dependent statistics of the Ising model.” J. Mathematical Physics

4(2): 294 – 307.

Grest, G. S., M. P. Anderson, et al. (1990). "Abnormal grain growth in three dimensions."

Scripta metall. et mater. 24: 661-665.

Hassold, G. N. and E. A. Holm (1993). "A fast serial algorithm for the finite temperature

quenched Potts model." Computers in Physics 7(1): 97-107.

Hassold, G. N., E. A. Holm, et al. (1990). "Effects of particle size on inhibited grain growth."

Scripta metallurgica et materiala 24: 101-106.

Hinz, D.C. and J.A. Szpunar (1995.) “Modeling the effect of coincidence site lattice

boundaries on grain growth textures.” Physical Review, B52(14): p. 9900-9909.

Holm, E. A. (1992). Modeling microstructural evolution in single-phase, composite and two-

phase polycrystals, Ph. D. Thesis, Univ. Michigan.

Holm, E. A. (1996). Critical Nucleus Sizes in the Potts model (private communication).

Holm, E. A. (2002). "Proof of boundary motion by curvature in the quenched ferromagnetic

Ising model." Physical Review Letters: submitted.

Holm, E. A., J. A. Glazier, D.J. Srolovitz and G.S. Grest (1991). "The effects of lattice

anisotropy and temperature on domain growth in the 2-D Potts model." Phys. Rev. A

43(6): 2662-2668.

Holm, E. A., G. N. Hassold and M. Miodownik (2001). "On misorientation distribution

evolution during anisotropic grain growth." Acta materiala 49: 2981-2991.

Holm, E. A., M. Miodownik and A.D. Rollett (2003). "On abnormal subgrain growth and the

origin of recrystallization nuclei." Acta materiala: 51, 2701-2716.

Ising, E. (1925). "Beitrag zue Theorie des Ferromagnetismus." (Contribution to the theory of

ferromagnetism) Zeitschrift für Physik, 31: 253-258.



Chapter 4: Monte Carlo Modeling of Grain Growth and Recrystallization, A.D. Rollett & P. Manohar

printed on: December 14, 2003 36

Jessel, M. W. (1988). "Simulation of fabric development in recrystallizing aggregates-I.

Description of the model." J. Structural Geology 10(8): 771-778.

Kawasaki, K. (1972), in Phase Transitions and Critical Phenomena, C. Domb and M.S.

Green, Editors, Academic Press: New York.

Kocks, U.F., C. Tomé, and H.-R. Wenk, eds. (1998). Texture and Anisotropy, Cambridge

University Press, Cambridge.

Korniss, G., Novotny, M. A. and Rikvold, P. A. (1999). "Parallelization of a dynamic Monte

Carlo algorithm: a partially rejection-free conservative approach." Journal of

Computational Physics 153: 488-508.

Landau, D. P. and K. Binder (2000). A Guide to Monte Carlo Simulations in Statistical

Physics. Cambridge, England, Cambridge University Press.

Lubachevsky, B. D. (1988). “Efficient parallel simulations of dynamic Ising spin

systems.” Journal of Computational Physics, 75: 103 – 122.

Lubachevsky, B. D. (1987). “Efficient parallel simulations of dynamic Ising spin

systems.” Complex Systems, 1: 1099 – 1123.
Martin, J., R.D. Doherty, and B. Cantor (1997). Stability of Microstructure in Metallic

Systems, 2nd ed., Cambridge University Press, Cambridge, England.

Martin, D. G. (1994). "Computer simulation of recrystallization and grain growth."

             Materials Science and Technology 10: 855-861.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.

(1953). "Equation of state calculations by fast computing machines." The Journal

of Chemical Physics 21(6): 1087-1092.

Miodownik, M., A. Godfrey, E.A. Holm, D.A. Hughes (1999). "On boundary misorientation

distribution functions and how to incorporate them into three-dimensional models of

microstructural evolution." Acta materiala 47(9): 2661-2668.

Miodownik, M., E. Holm, et al. (2000). "Highly parallel computer simulations of particle

pinning: Zener vindicated." Scripta Materiala 42: 1173-1177.

Mullins, W. W. (1956). "Two-dimensional motion of idealized grain boundaries." J. Appl.

Phys. 27: 900-904.

Novotny M. A. (1995). “A new approach to an old algorithm for the simulation of

Ising-like systems”, Computers in Physics, 9(1): 46 – 52.

Okuda, K. (2002). private communication.

Pathria R. K. (1972): Statistical Mechanics, Pergamon Press, Oxford.

Peczak, P. (1995). "A Monte Carlo study of influence of deformation temperature on

dynamic recrystallization." Acta Metall. 43(3): 1279-1291.

Plischke, M. and Bergensen, B. (1994). Statistical Equilibrium Physics, 2
nd
 ed.,

World Scientific Publishing, Singapore.

Potts, R. B. (1952). “Some generalized order-disorder transitions”, Proc. Cambridge

Philosophical Society, 48: 106 – 109.
Radhakrishnan, B. and T. Zacharia (1995). "Simulation of curvature-driven grain growth

using a modified Monte Carlo algorithm." Metallurgical and Materials Transactions

26A: 167.

Radhakrishnan, B., G.B. Sarma, and T. Zacharia (1998). “Modeling the kinetics and

microstructural evolution during static recrystallization- Monte Carlo simulation of

recrystallization.” Acta materiala, 46(12): p. 4415-4433.

Randle, V. and O. Engler (2000). Texture Analysis: Macrotexture, Microtexture &

Orientation Mapping, Amsterdam, Holland: Gordon & Breach. 388.

Rollett, A. D., M. J. Luton, et al. (1992). "Computer Simulation of Dynamic
Recrystallization." Acta metall. mater. 40: 43-55.



Chapter 4: Monte Carlo Modeling of Grain Growth and Recrystallization, A.D. Rollett & P. Manohar

printed on: December 14, 2003 37

Rollett, A. D. and W. W. Mullins (1996). "On the growth of abnormal grains." Scripta metall.

et mater. 36(9): 975-980.

Rollett, A. D. and D. Raabe (2001). "A Hybrid Model for Mesoscopic Simulation of

Recrystallization." Computational Materials Science 21(1): 69-78.

Rollett, A. D., D. J. Srolovitz, et al. (1989). "Simulation and Theory of Abnormal Grain

Growth- Variable Grain Boundary Energies and Mobilities." Acta Metall. 37: 2127.

Rollett, A. D., D. J. Srolovitz, et al. (1992). "Computer Simulation of Recrystallization - III.

Influence of a Dispersion of Fine Particles." Acta Metallurgica 40: 3475-3495.

Rollett, A. D., D. J. Srolovitz, et al. (1989). "Computer Simulation of Recrystallization in

Non-Uniformly Deformed Metals." Acta Metall. 37: 627.

Sahni, P., D. Srolovitz, et al. (1983). "Kinetics of ordering in two dimensions. II. Quenched

systems." Phys. Rev. B 28: 2705.

Sarma, G.B., B. Radhakrishnan, and P.R. Dawson (2002). “Mesoscale modeling of

microstructure and texture evolution during deformation processing of metals.”

Advanced Engineering Materials, 4(7): p. 509-514.

Saylor, D. M., J. Fridy, et al. (2003). "Statistically Representative Three-Dimensional

Microstructures Based on Orthogonal Observation Sections." Metallurgical and

Materials Transactions: in press.

Saylor, D. M., A. Morawiec, et al. (2002). "The Distribution and Energies of Grain

Boundaries as a Function of Five Degrees of Freedom." Journal of The American

Ceramic Society: submitted.

Srolovitz, D. J., M. P. Anderson, et al. (1984). "Computer simulation of grain growth- III.

influence of a particle dispersion." Acta metallurgica 32: 1429-1438.

Srolovitz, D. J., M. P. Anderson, et al. (1984). "Computer simulation of grain growth - II.

grain size distribution, topology and local dynamics." Acta metallurgica 32: 793.

Srolovitz, D. J., G. S. Grest, et al. (1986). "Computer simulation of recrystallization- I.

Homogeneous nucleation and growth." Acta metallurgica 34: 1833-1845.

Srolovitz, D. J., G. S. Grest, et al. (1988). "Computer simulation of recrystallization: II.

Heterogeneous Nucleation and Growth." Acta metallurgica 36(8): 2115-2128.

Srolovitz, D. J. and G. N. Hassold (1987). Effects of diffusing impurities on domain growth

in the Ising model. preprint LA-UR 86-3445.

Upmanyu, M., D. Srolovitz, et al. (1998). "Atomistic simulation of curvature driven grain

boundary migration." Interface Science 6(1-2): 41-58.

Yang, C.-C., A. D. Rollett, et al. (2001). "Measuring relative grain boundary energies and

mobilities in an aluminum foil from triple junction geometry." Scripta Materiala 44:

2735-2740.

Zener, C. (1948). communication to C.S. Smith. Transactions of the Metallurgical Society of

AIME. 175: 15.


